Clustering Contextual Facial Display Sequences
نویسنده
چکیده
We describe a method for learning classes of facial motion patterns from video of a human interacting with a computerized embodied agent. The method also learns correlations between the uncovered motion classes and the current interaction context. Our work is motivated by two hypotheses. First, a computer user’s facial displays will be context dependent, especially in the presence of an embodied agent. Second, each interactant will use their face in different ways, for different purposes. Our method describes facial motion using optical flow over the entire face, projected to the complete orthogonal basis of Zernike polynomials. A context-dependent mixture of hidden Markov models (cmHMM) clusters the resulting temporal sequences of feature vectors into facial display classes. We apply the clustering technique to sequences of continuous video, in which a single face is tracked and spatially segmented. We discuss the classes of patterns uncovered for a number of subjects.
منابع مشابه
بازشناسی جلوههای هیجانی با استفاده از تحلیل تفکیک پذیری مبتنی بر خوشه بندی چهره
Improvement of Facial expression recognition is aim of proposed method. This is a new formulation to the linear discriminant analysis. In the new formulation within-class and between-class covariance matrix are estimated on the each cluster and in the test phase new samples are mapped to the subspace that is related to the cluster of them. At the first we addressed clustering analysis of faces ...
متن کاملHierarchical clustering based upon contextual alignment of proteins: a different way to approach phylogeny.
We perform a computational study using a new approach to the analysis of protein sequences. The contextual alignment model, proposed recently by Gambin et al. (2002), is based on the assumption that, while constructing an alignment, the score of a substitution of one residue by another depends on the surrounding residues. The contextual alignment scores calculated in this model were used to hie...
متن کاملA Dynamic Programming Approach To Document Clustering Based On Term Sequence Alignment
Document clustering is unsupervised machine learning technique that, when provided with a large document corpus, automatically sub-divides it into meaningful smaller sub-collections called clusters. Currently, document clustering algorithms use sequence of words (terms) to compactly represent documents and define a similarity function based on the sequences. We believe that the word sequence is...
متن کاملExtraction of activity patterns on large video recordings
Extracting the hidden and useful knowledge embedded within video sequences and thereby discovering relations between the various elements to help an efficient decision-making process is a challenging task. The task of knowledge discovery and information analysis is possible because of recent advancements in object detection and tracking. The authors present how video information is processed wi...
متن کاملDecoding pain from the facial display of patients with dementia: a comparison of professional and nonprofessional observers.
OBJECTIVE Patients with dementia, whose ability to provide self-report of pain is often impaired, are in crucial need of observers who can detect and judge the patients' pain-indicative behaviors appropriately, in order to initiate treatment. The facial display of pain promises to be especially informative for that purpose. The major aim of the study was to investigate, whether facial pain disp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002